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Semi-supervised Image Classification

Figure: Highlight of learning and training strategies in correlation with
trends [SSSK21]
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Semi-supervised Image Classification

efficient use of data

cost-effective labelling

adaptability to new data

robustness to noisy labels

real-world applications: medical imaging, satellite imagery,
surveillance

”The goal of any semi-supervised model is to have better
performance after training on both labeled and unlabeled data
than that of a supervised model trained only on labeled data.”
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Rainfall nowcasting

modeled as semi-supervised image classification

remote sensing data can be viewed as grid maps

example labelling:

no rain (0 mm/hr of precipitation)
light rain (1-4 mm/hr of precipitation)
moderate rain (4-10 mm/hr of precipitation)
heavy rain (more than 10 mm/hr of precipitation)

Paul-Dumitru Orăşan WeaMyL
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Rainfall nowcasting - visualization

Figure: Remote sensing data corresponding to a geographical areaPaul-Dumitru Orăşan WeaMyL
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Rainfall nowcasting - visualization

Figure: Data visualized in a grid formatPaul-Dumitru Orăşan WeaMyL
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Rainfall nowcasting - visualization

Figure: Rainfall event labels associated to each grid cellPaul-Dumitru Orăşan WeaMyL
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Semi-supervised learning
Rainfall nowcasting

Pseudo-labelling based methods

Figure: Overview of pseudo-labeling semi-supervised mehods [YSKX23]
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Semi-supervised learning
Rainfall nowcasting

Methods applied for rainfall nowcasting

Supervised deep-learning approaches

Convolutional Neural Networks [ACM+22]
Vision Transformers [CSZ+23]

Generative approaches

Generative Adversarial Networks [NZW+23]
Denoising Diffusion Probabilistic Models

Semi-supervised deep-learning approaches

Graph Neural Networks [MWH+20]
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Diffusion models

Figure: Forward diffusion process - adding noise each step

q(xt |xt−1) = N (
√
αtxt−1, (1− αt−1)I ) (1)
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Diffusion models

Figure: Backward diffusion process - removing noise each step

pθ(xt−1|xt) = N (µθ(xt , t),Σθ(xt , t)) (2)
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LRA-Diffusion

CARD [HZZ22] extends diffusion models to classification and
regression tasks

LRA-Diffusion [CZY+23] robust to noisy labels

Figure: Overview of LRA-Diffusion [CZY+23]
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Proposal

Figure: Learning neighboring distribution

p(ȳ |x) = N (fϕ(x), I )

ȳ = {y1, y2, . . . , yk}
(3)
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Semi-supervised pipeline

Figure: Full overview of the semi-supervised pipeline

Paul-Dumitru Orăşan WeaMyL
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Roadmap

Phase 1 - implementation and validation (completed)

Building the codebase for the training framework
Running experiments to validate the semi-supervised
hypothesis

Phase 2 - rainfall nowcasting application (in progress)

Training feature extractors for remote sensing data using
contrastive learning
Running experiments to validate the semi-supervised
hypothesis
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Datasets

CIFAR-10 (60000 labels, 10 classes)

40 labels
250 labels
4000 labels

CIFAR-100 (60000 labels, 20 classes divided into 600
subclasses)

400 labels
2500 labels
10000 labels

Remote sensing data
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Method
Dataset CIFAR-10 CIFAR-100

40 250 4000 400 2500 10000

Supervised 62.73 75.19 82.64 33.92 38.12 53.65

Semi-supervised 87.15 92.37 96.79 47.83 69.42 75.84

SoTA 94.40 95.16 96.04 62.19 74.93 79.42

Table: Quantitative evaluation of our method. Top row describes the
results achieved by training our method using only labeled data. The
middle row shows the results achieved by training our method using both
labeled and unlabeled data. The last row describes the current
state-of-the-art benchmark results.
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Proportion of data

Figure: Proportion of training dataset per model iteration

Paul-Dumitru Orăşan WeaMyL
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Correctness of pseudo-labels

Figure: Robustness of confidence evaluation methods
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Limitations and challenges

high computational demands;

lack of resources;

scarcity of public, open-source feature extractors for remote
sensing data

amplified performance hit under heavy stress (less than 1%
labeled data)
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